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Abstract 

The current mathematical model examined blood behavior in arteries with unique geometries. Studying blood 

flow through a strange shape with a magnetic field is the primary goal of this investigation. The mathematical 

model utilized for the evaluation employs the parameter variation method to solve coupled partial differential 

equations. The main conclusions are graphically displayed and examined for different values of the 

dimensionless parameters. In order to study the general behavior of blood flow patterns, the velocity profile 

for a number of recently developing characteristics is shown. The newest studies are beneficial for biologically 

treating different cardiovascular ailments. 
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Introduction  

The blood channels known as arteries carry blood from the heart to every region of the body (lungs, tissues, 

brain etc.). The buildup of plaque on the artery walls, which narrows the flow region and causes the disease 

atherosclerosis or stenosis, is one of the obstacles that frequently occur in the arteries during blood flow. 

Stenosis hardens and narrows the blood vessels over time, reducing the amount of oxygenated blood that 

reaches the organs and other parts of the body and increasing the risk of serious problems like heart attack, 

stroke, and even death. Researchers have investigated the flow behaviour and rheology of blood both 

theoretically and experimentally to infer the developments in the diagnosis and treatment of vascular disorders 

after realizing the significance of hydrodynamic parameters in the development of heart diseases [1-10]. 

Prasad et al. [3] used a mathematical model for steady flow in two dimensions and considered hematocrit in 

their study, assuming the stenosed arterial segment tapered. Manisha and kumar [22] investigated an analytical 

mathematical model of a two-layered symmetric stenosed artery with integrative heat and mass transfer effects 

through a porous medium. Majeed et al. [27]  proposed a fractional model of MHD blood flow with magnetic 

particles. A simplification of the problem used the Caputo time-fractional derivative and obtained a solution 

using the Finite Hankel and Laplace transform. They found that the motion of the blood and magnetic particles 

is decelerated when the magnetic parameter and the particle mass parameter are increased.  

The behavior of fluid and the type of (pulsatile) flow are just two of the hidden properties of blood rheology 

that have been revealed via investigations of many mathematical models over the years [11-17]. Numerous 

studies have found that blood vessels exhibit pulsing flow behavior, and these oscillations are continuously 

dampened. Because it alters the flow pattern, blood artery-related disease plays a crucial role in hemodynamics 
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by causing changes in the arteries by wall pressure and wall shear stress [8-17]. Kumar and Kumar [21] 

investigated model of the elliptical stenosed artery with the magnetic field, heat source and chemical reaction. 

Abumandour et al. [23] improved analytical implementation of the interaction effect of slip and thermal 

conditions on particle fluid suspensions along vertical stenotic arterioles with or without magnetic fields and 

porosity. The influences of Soret and Dufour have been investigated in the bloodstream through a tapered 

porous stenosed artery by Sharma et al. [30]. They found that the magnetic field keeps on slowing the blood 

flow. Awrejcewicz et al. [24] formulated a theoretical model of the blood flow in arteries under body 

acceleration and the magnetic fields presence. Poonam et al. [29] discussed a computational mathematical 

model with nanoparticle transport in an aneurysmal and stenosed curved artery along mass and heat transfer 

factors. They observed the remarkable impact of hybrid nanoparticles in the presence of radiation and chemical 

reaction on heat mass transfer, arterial curvature on flow velocity and wall shear stress patterns. Padma et al. 

[28] analysis of a mathematical model of Jeffrey fluid in the tapered porous artery plays a vital role in bridge 

lacuna.  

In the current work, magnetic field parameters are used to examine a fluid model in an abnormal stenosed 

artery. The study was carried out using appropriate analytical techniques. Finding the flow rate, axial velocity, 

and shear stress in a particular circumstance is made easier with the aid of this methodology. 

Mathematical Formulation  

The current two-phase model of blood circulation through the abnormal stenosed artery is pulsating, 

incompressible, and unstable. The viscosity and geometry of the anomalous artery are defined as two separate 

layers (core and plasma) as 𝜇̅(𝑟̅) =  𝜇̅𝑐 for core layer and 𝜇̅(𝑟̅) =  𝜇̅𝑝 for plasma layer  

𝑅̅𝑐(𝑧̅) = {
𝛽 𝑅̅0 − 𝛿𝑠̅ 𝑒

−
𝑚2

𝑅̅0
2  [𝑧̅−𝑑̅−𝐿̅0/2]

2

  ;  𝑑̅  ≤ 𝑧̅  ≤ 𝑑̅ + 𝐿̅0
𝛽 𝑅̅0                                           ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

 

𝑅̅𝑐(𝑧̅) = {
 𝑅̅0 − 𝛿𝑠̅ 𝑒

−
𝑚2

𝑅̅0
2  [𝑧̅−𝑑̅−𝐿̅0/2]

2

  ;  𝑑̅  ≤ 𝑧̅  ≤ 𝑑̅ + 𝐿̅0
 𝑅̅0                                           ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

 

Where 𝐿̅0, 𝛿𝑠̅, 𝑚, 𝑅̅0, 𝛽, are represented constriction length, maximum depth of the constriction, shape 

parameter, normal artery, ratio of core and normal artery 

The modeling equations of the current investigation for core and plasma layers [21, 22, 23, 30] are as  

𝜌̅𝑐  
𝜕𝑢𝑐

𝜕𝑡̅
= − 

𝜕𝑝̅𝑐

𝜕𝑧̅
+ 𝜇̅𝑐  (

𝜕2𝑢𝑐

𝜕𝑟̅2
+ 

1

𝑟̅
 
𝜕𝑢𝑐

𝜕𝑟̅
) − 𝜎 𝐵̅0

2 𝑢̅𝑐 −
𝜇̅𝑐

𝑘
 𝑢̅𝑐             (1) 

𝜕𝐶̅𝑐

𝜕𝑡̅
 =  𝐷̅𝑐  (

𝜕2𝐶̅𝑐

𝜕𝑟̅2
+ 

1

𝑟̅
 
𝜕𝐶̅𝑐

𝜕𝑟̅
) − 𝐸̅𝑐 (𝐶𝑐̅ − 𝐶0̅)               (2) 

𝜌̅𝑐 𝑐𝑐̅  
𝜕𝑇̅𝑐

𝜕𝑡̅
= 𝐾̅𝑐  (

𝜕2𝑇̅𝑐

𝜕𝑟̅2
+ 

1

𝑟̅
 
𝜕𝑇̅𝑐

𝜕𝑟̅
) − 

𝜕𝑞̅𝑐

𝜕𝑟̅
+ 𝑄̅𝑐 (𝑇̅𝑐 − 𝑇̅0)             (3) 

𝜌̅𝑝  
𝜕𝑢𝑝

𝜕𝑡̅
= − 

𝜕𝑝̅𝑝

𝜕𝑧̅
+ 𝜇̅𝑝  (

𝜕2𝑢𝑝

𝜕𝑟̅2
+ 

1

𝑟̅
 
𝜕𝑢𝑝

𝜕𝑟̅
) − 𝜎 𝐵̅0

2 𝑢̅𝑝 −
𝜇̅𝑝

𝑘
 𝑢̅𝑐           (4) 

𝜕𝐶̅𝑝

𝜕𝑡̅
 =  𝐷̅𝑝  (

𝜕2𝐶̅𝑝

𝜕𝑟̅2
+ 

1

𝑟̅
 
𝜕𝐶̅𝑝

𝜕𝑟̅
) − 𝐸̅𝑝 (𝐶𝑝̅ − 𝐶0̅)               (5) 

𝜌̅𝑝 𝑐𝑝̅  
𝜕𝑇̅𝑝

𝜕𝑡̅
= 𝐾̅𝑝  (

𝜕2𝑇̅𝑝

𝜕𝑟̅2
+ 

1

𝑟̅
 
𝜕𝑇̅𝑝

𝜕𝑟̅
) − 

𝜕𝑞̅𝑝

𝜕𝑟̅
+ 𝑄̅𝑝 (𝑇̅𝑝 − 𝑇̅0)             (6) 
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Where 𝜌̅𝑐, 𝑅̅𝑐(𝑧̅), 𝑇̅𝑐, 𝑐𝑐̅, 𝜇̅𝑐, 𝑢̅𝑐, 𝐶𝑐̅, 𝐾̅𝑐, 
𝜕𝑞̅𝑐

𝜕𝑟̅
,  𝐷̅𝑐, and 𝛼̅𝑐 are represented density, stenosis province, temperature 

profile, specific heat, viscosity, velocity profile, concentration profile, thermal conductivity, radiation effect, 

coefficient of mass diffusivity, and the mean radiation absorption respectively for core region, 𝜌̅𝑝, 𝑅̅𝑝(𝑧̅), 𝑇̅𝑝, 

𝑐𝑝̅, 𝜇̅𝑝, 𝑢̅𝑝, 𝐶𝑝̅, 𝐾̅𝑝, 
𝜕𝑞̅𝑝

𝜕𝑟̅
,  𝐷̅𝑝, and 𝛼̅𝑝 are represented density, stenosis province, temperature profile, specific 

heat, viscosity, velocity profile, concentration profile, thermal conductivity, radiation effect, coefficient of 

mass diffusivity, and the mean radiation absorption respectively for plasma region and 𝐵̅0, 𝑘, 𝜎, are represented 

magnetic field intensity,  permeability,  electrical conductivity for both regions repectively 

The following are the boundary conditions for decoding the concern problem for both partitions: 

𝑢̅𝑝 = 0, 𝑇̅𝑝 = 𝑇̅𝑤, 𝐶𝑝̅ = 𝐶𝑤̅  at  𝑟̅ =  𝑅̅𝑝(𝑧̅)

𝑢̅𝑐 = 𝑢̅𝑝, 𝜏𝑐̅ = 𝜏𝑝̅, 𝑇̅𝑝 = 𝑇̅𝑐,
𝜕𝑇̅𝑐

𝜕𝑟̅
=

𝜕𝑇̅𝑝

𝜕𝑟̅
, 𝐶𝑝̅ = 𝐶𝑐̅,

𝜕𝐶̅𝑐

𝜕𝑟̅
= 

𝜕𝐶̅𝑝

𝜕𝑟̅
  𝑎𝑡 𝑟̅ =  𝑅̅𝑐(𝑧̅) 

𝜕𝑇̅𝑐

𝜕𝑟̅
= 0,

𝜕𝐶̅𝑐

𝜕𝑟̅
=  0,

𝜕𝑢𝑐

𝜕𝑟̅
=  0  𝑎𝑡  𝑟̅ =  0  

}
 
 

 
 

                  

It is familiarizing the following dimensionless parameters. 

𝑟 =  
𝑟̅

𝑅̅0
, 𝑡 = 𝑡̅ 𝑤̅, 𝑢𝑐 = 

𝑢𝑐

𝑢0
, 𝑢𝑝 = 

𝑢𝑝

𝑢0
,  𝑧 =

𝑧̅

𝑅̅0
, 𝑅𝑐(𝑧) =  

𝑅̅𝑐(𝑧̅)

𝑅̅0
, 𝑅𝑝(𝑧) =  

𝑅̅𝑝(𝑧̅)

𝑅̅0
 𝜇0 = 

𝑢𝑝

𝑢𝑐
, 𝑝𝑝 = 

𝑅̅0 𝑝̅𝑝

𝜇̅𝑝 𝑢̅0
, 𝑝𝑐 = 

𝑅̅0 𝑝̅𝑐

𝜇̅𝑝 𝑢̅0
,  

𝐷0 = 
 𝐷̅𝑝

 𝐷̅𝑐
, 𝜌0 = 

𝜌̅𝑝

𝜌̅𝑐
, 𝑠0 = 

𝑐𝑝̅

𝑐𝑐̅
, Re = 

𝜌̅𝑝 𝑅̅0
2 𝑤̅

𝜇̅𝑝
, 𝑆𝑐 = 

𝜇̅𝑝

 𝐷̅𝑝 𝜌̅𝑝
, 𝜃𝑝 = 

(𝑇̅𝑝− 𝑇̅0)  

(𝑇̅𝑤− 𝑇̅0)  
, 𝜃𝑐 = 

(𝑇̅𝑐− 𝑇̅0)  

(𝑇̅𝑤− 𝑇̅0)  
, 𝜎𝑐 = 

(𝐶̅𝑐− 𝐶̅0)  

(𝐶̅𝑤− 𝐶̅0)  
, 𝜎𝑝 =

 
(𝐶̅𝑝− 𝐶̅0)  

(𝐶̅𝑤− 𝐶̅0)  
, 𝑀2 = 

𝜎̅ 𝐵̅0
2 𝑅̅0

2

𝜇̅𝑝
, 𝑁2 =  

4 𝛼̅𝑝
2  𝑅̅0

2

𝐾̅𝑝
, Pe = 

𝑐𝑝̅ 𝜌̅𝑝 𝑅̅0
2 𝑤̅

𝐾̅𝑝
, 𝐾0 =

𝐾̅𝑝

𝐾̅𝑐
, 𝛼0 = 

𝛼̅𝑝
2

𝛼̅𝑐
2, 𝐸0 =  

𝐸̅𝑝

𝐸̅𝑐
 

Solution of the Problem  

The pulsatile nature of blood circulation is taken into account when flow equations are used. We assume that 

the following are defined in dimensionless form as  

𝑢𝑐(𝑟, 𝑡) =  𝑢𝑐0(𝑟)𝑒
𝑖𝑤𝑡, 𝜎𝑐(𝑟, 𝑡) =  𝜎𝑐0(𝑟)𝑒

𝑖𝑤𝑡, 𝜃𝑐(𝑟, 𝑡) =  𝜃𝑐0(𝑟)𝑒
𝑖𝑤𝑡, −

𝜕𝑝𝑐

𝜕𝑧
= 𝑃0 , 𝑢𝑝(𝑟, 𝑡) =  𝑢𝑝0(𝑟)𝑒

𝑖𝑤𝑡,

𝜎𝑝(𝑟, 𝑡) =  𝜎𝑝0(𝑟)𝑒
𝑖𝑤𝑡, 𝜃𝑝(𝑟, 𝑡) =  𝜃𝑝0(𝑟)𝑒

𝑖𝑤𝑡, −
𝜕𝑝𝑝

𝜕𝑧
= 𝑃0 𝑒

𝑖𝑤𝑡              

Equations (1) and (4) solve converting dimensionless form, and we obtained final solutions for both layers 

using dimensionless parameters and boundary conditions. 

𝑢𝑐(𝑟, 𝑡) =  {𝐶1 𝐽0(𝜑𝑐 𝑟) −
𝐹𝑐

𝜑𝑐
2} 𝑒

𝑖𝑤𝑡 and 𝑢𝑝(𝑟, 𝑡) = {𝐶3 𝐽0(𝜑𝑝 𝑟) + 𝐶4 𝑌0(𝜑𝑝 𝑟) − 
𝐹𝑝

𝜑𝑝
2} 𝑒

𝑖𝑤𝑡  

𝐶1𝐺1 = [𝜑𝑝 𝐽1(𝜑𝑝 𝑅𝐶)(𝑌0(𝜑𝑝 𝑅𝑝) 𝐷2 − 𝑌0(𝜑𝑝 𝑅𝐶) 𝐷1) + 𝜑𝑝 𝑌1(𝜑𝑝 𝑅𝐶)(𝐽0(𝜑𝑝 𝑅𝐶)𝐷1 − 𝐽0(𝜑𝑝 𝑅𝑝) 𝐷2)] 

𝐶3𝐺1 = [𝜑𝐶  𝐽1(𝜑𝐶  𝑅𝐶)(𝑌0(𝜑𝑝 𝑅𝑝) 𝐷2 − 𝑌0(𝜑𝑝 𝑅𝐶) 𝐷1) + 𝜑𝑝 𝑌1(𝜑𝑝 𝑅𝐶)𝐽0(𝜑𝐶  𝑅𝐶)𝐷1] 

𝐶4𝐺1 = [(𝜑𝐶  𝐽1(𝜑𝐶  𝑅𝐶)𝐽0(𝜑𝑝 𝑅𝐶) − 𝜑𝑝 𝐽1(𝜑𝑝 𝑅𝐶) 𝐽0(𝜑𝐶  𝑅𝐶))𝐷1 + 𝜑𝐶  𝐽1(𝜑𝐶  𝑅𝐶)𝐽0(𝜑𝑝 𝑅𝑝) 𝐷2] 

𝐺1 = [(𝜑𝐶  𝐽1(𝜑𝐶  𝑅𝐶)𝐽0(𝜑𝑝 𝑅𝐶) − 𝜑𝑝 𝐽1(𝜑𝑝 𝑅𝐶)𝐽0(𝜑𝐶  𝑅𝐶)) 𝑌0(𝜑𝑝 𝑅𝑝) + 𝐺 𝐽0(𝜑𝑝 𝑅𝑝)], 𝐷2 = 
𝑃0

𝜑𝑝
2  – 

𝑃0𝜇0

𝜑𝑐
2  

𝐷1 = 
𝑃0

𝜑𝑝
2, 𝐺 = 𝜑𝑝 𝑌1(𝜑𝑝 𝑅𝐶) 𝐽0(𝜑𝐶  𝑅𝐶) − 𝜑𝐶  𝐽1(𝜑𝐶  𝑅𝐶)𝑌0(𝜑𝑝 𝑅𝐶) 

Equations (2) – (7) solve converting dimensionless form, and we obtained final solutions for both layers using 

dimensionless parameters and boundary conditions. 

𝜎𝑐(𝑟, 𝑡) =  𝐶5 𝐽0(𝜓𝑐 𝑟) 𝑒
𝑖𝑤𝑡   and  𝜎𝑝(𝑟, 𝑡) =  {𝐶7 𝐽0(𝜓𝑝 𝑟) + 𝐶8 𝑌0(𝜓𝑝 𝑟)} 𝑒

𝑖𝑤𝑡      
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𝐶5𝐺2 = (𝜓𝑝 𝐽1(𝜓𝑝 𝑅𝐶)𝑌0(𝜓𝑝 𝑅𝐶) − 𝜓𝑝 𝑌1(𝜓𝑝 𝑅𝐶)𝐽0(𝜓𝑝 𝑅𝐶)) 𝑒
−𝑖𝑤𝑡 

𝐶7𝐺2 = (𝜓𝐶  𝐽1(𝜓𝐶  𝑅𝐶)𝑌0(𝜓𝑝 𝑅𝐶) − 𝜓𝑝 𝑌1(𝜓𝑝 𝑅𝐶)𝐽0(𝜓𝐶  𝑅𝐶)) 𝑒
−𝑖𝑤𝑡 

𝐶8𝐺2 = (𝜓𝑝 𝐽1(𝜓𝑝 𝑅𝐶) 𝐽0(𝜓𝐶  𝑅𝐶) − 𝜓𝐶  𝐽1(𝜓𝐶  𝑅𝐶)𝐽0(𝜓𝑝 𝑅𝐶) )𝑒
−𝑖𝑤𝑡 

𝐺2 = 𝜓𝐶  𝐽1(𝜓𝐶  𝑅𝐶) (𝐽0(𝜓𝑝 𝑅𝑝)𝑌0(𝜓𝑝 𝑅𝐶) − 𝐽0(𝜓𝑝 𝑅𝐶)𝑌0(𝜓𝑝 𝑅𝑝))  

+  𝜓𝑝 𝐽0(𝜓𝐶  𝑅𝐶) ( 𝐽1(𝜓𝑝 𝑅𝐶) 𝑌0(𝜓𝑝 𝑅𝑝)  − 𝑌1(𝜓𝑝 𝑅𝐶) 𝐽0(𝜓𝑝 𝑅𝑝)) 

Equations (2) – (7) solve converting dimensionless form, and we obtained final solutions for both layers using 

dimensionless parameters and boundary conditions.  

𝜃𝑐(𝑟, 𝑡) =  𝐶9 𝐽0(𝜆𝑐 𝑟) 𝑒
𝑖𝑤𝑡   and  𝜃𝑝(𝑟, 𝑡) =  {𝐶11 𝐽0(𝜆𝑝 𝑟) + 𝐶12𝑌0(𝜆𝑝 𝑟)} 𝑒

𝑖𝑤𝑡    

𝐶9𝐺3 = (𝜆𝑝 𝐽1(𝜆𝑝 𝑅𝐶)𝑌0(𝜆𝑝 𝑅𝐶) − 𝜆𝑝 𝑌1(𝜆𝑝 𝑅𝐶)𝐽0(𝜆𝑝 𝑅𝐶)) 𝑒
−𝑖𝑤𝑡 

𝐶11𝐺3 = (𝜆𝐶  𝐽1(𝜆𝐶  𝑅𝐶)𝑌0(𝜆𝑝 𝑅𝐶) − 𝜆𝑝 𝑌1(𝜆𝑝 𝑅𝐶) 𝐽0(𝜆𝐶  𝑅𝐶)) 𝑒
−𝑖𝑤𝑡 

𝐶12𝐺3 = (𝜆𝑝 𝐽1(𝜆𝑝 𝑅𝐶)𝐽0(𝜆𝐶  𝑅𝐶) − 𝜆𝐶  𝐽1(𝜆𝐶  𝑅𝐶)𝐽0(𝜆𝑝 𝑅𝐶)) 𝑒
−𝑖𝑤𝑡 

𝐺3 = 𝜆𝐶  𝐽1(𝜆𝐶  𝑅𝐶) (𝐽0(𝜆𝑝 𝑅𝑝)𝑌0(𝜆𝑝 𝑅𝐶) − 𝐽0(𝜆𝑝 𝑅𝐶) 𝑌0(𝜆𝑝 𝑅𝑝)) + 𝜆𝑝 𝐽0(𝜆𝐶  𝑅𝐶) ( 𝐽1(𝜆𝑝 𝑅𝐶) 𝑌0(𝜆𝑝 𝑅𝑝) −

 𝑌1(𝜆𝑝 𝑅𝐶)𝐽0(𝜆𝑝 𝑅𝑝))   

The flow resistance 𝜆 and volumetric flow rate 𝑄𝑐 and 𝑄𝑝 are defined as 

𝜆 =  ∫
𝑃0𝑒

𝑖𝑤𝑡

𝑄

𝑧

0
 𝑑𝑧, 𝑄𝑝 = 2 𝜋 𝑅𝑝

2 ∫ 𝑢𝑝(𝑟, 𝑡)
𝑅𝑝

𝑅𝐶
 𝑑𝑟, 𝑄𝑐 = 2 𝜋 𝑅𝑝

2 ∫ 𝑢𝑐(𝑟, 𝑡)
𝑅𝑐

0
 𝑑𝑟  

The total volumetric flow rate 𝑄 is calculated as 𝑄 = 𝑄𝑐 + 𝑄𝑝 = ∑𝑄𝑙  

𝑄 = 2 𝜋 𝑅𝑝
2 𝐵1𝑐 𝑒

𝑖𝑤𝑡  ∫ 𝐽0(𝜑𝑐 𝑟)
𝑅𝑐

0
 𝑑𝑟 +  2 𝜋 𝑅𝑝

2 𝐵1𝑝 𝑒
𝑖𝑤𝑡  ∫ 𝐽0(𝜑𝑝 𝑟)

𝑅𝑝

𝑅𝑐
 𝑑𝑟 −

2 𝜋 𝑃0𝜇0𝑅𝑝
2  𝑅𝑐𝑒

𝑖𝑤𝑡

𝜑𝑐
2   

+ 2 𝜋 𝑅𝑝
2 𝐵2𝑝 𝑒

𝑖𝑤𝑡  ∫ 𝑌0(𝜑𝑝 𝑟)
𝑅𝑝

𝑅𝑐
 𝑑𝑟 −

2 𝜋 𝑃0𝑅𝑝
2  (𝑅𝑝−𝑅𝑐)𝑒

𝑖𝑤𝑡

𝜑𝑝
2   

Result and Discussion 

We conducted this study to learn the most important information about blood flow through the plasma and 

core layer. The Reynolds number, heat source, magnetic field parameter, Schmidt parameter, Peclet number, 

pressure gradient, radiation parameter, and chemical reaction are all used in this study to achieve an admirable 

effect. Also present in the plasma and core layers are thermal conductivity ratios, specific heat, viscosities, heat 

source, and mean radiation absorption coefficients. The default values of parameters used to evaluate the 

model's effectiveness are depicted graphically as as , 𝑃0 = 10, 𝑤 = 1, 𝜌0 =  1.05, 𝛼0 = 1, 𝑅𝑒 = 0.9, 𝜇0 =

1.02,  𝑀 =  2, 𝑆𝑐  =  0.5, 𝑁 =  2, 𝐸 =  0.7, 𝑃𝑒  =  0.87, 𝐾0  =  0.4, 𝑠0 =  1 𝑅𝑑1 = 0.8,  𝑅𝑑0 = 1 

[1,4, 13,18, 19, 20, 25, 26, 30, 31].  

In figures 1–4, we want to look at how radiation parameters, Peclet number, pulse rate, and heat source affect 

the temperature profile in the constricted artery. Figure 1 depicts how the temperature profile of the core and 

plasma regions varies with the radiation parameter (N). The figure clearly shows that as the values of the 

radiation parameter increase, the temperature profile of the blood flow decreases. As a result, when plasma 

separates from red blood cells, as in two-phase analysis, the temperature profile in the core region is lower than 

in the plasma region due to the buoyancy force created by the radiation effect. Furthermore, with no radiation 
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effect, the temperature profile exhibits exactly opposite behaviour for core and plasma regions, with higher 

values in the core region than in the plasma region. Figures 2 and 3 show temperature profiles with variations 

in Peclet number and pulse rate in the constricted artery. The temperature profile of both parameters (Peclet 

number and pulse rate) has the same trend as the radiation parameter. Figure 4 depicts the temperature account 

in the constricted artery with different values of a heat source parameter. According to the graph, increasing 

the heat source parameter causes the temperature to accelerate. Its beneficial effect on blood pressure and flow. 

Figures (5–8) show the concentration profile in the constricted artery with the Reynold number, Schmidt 

number, chemical reaction, and pulse rate. Figures (5–8) show that increasing the Reynold number, Schmidt 

number, chemical reaction, and pulse rate individually decreases the concentration profile. All of the figures 

in the concentration account follow the same pattern. Figure 9 depicts the axial direction of flow resistance as 

a function of the magnetic field parameter. When there are positive changes in the magnetic field, the resistance 

flow curve through the magnetic field parameter reaches its maximum value. Figures  (10-13) show the effect 

of several parameters on blood velocity in the stenotic artery, including the Reynolds number, magnetic field 

parameter, pressure gradient, and pulse rate. Figure 10 shows the change in velocity as well as the varying 

Reynolds number of the constricted artery. Because of the increase in the Reynold number, the blood velocity 

in the narrowed artery accelerates. In figure 11, the impact demonstrates the opposite change in velocity along 

with the varying magnetic field parameter of the stenosed artery when used with the magnetic field parameter 

on the velocity profile. In figure 12, increasing the pulse rate in the constricted artery causes the velocity profile 

to decrease, whereas increasing the pressure gradient causes the velocity profile to accelerate in figure 13. 

Figure 14 depict the axial variation of shear stress on the outer and inner walls of the constricted artery in the 

presence of a magnetic field. Figure 14 depicts the effect of pressure gradient in the narrowed artery is 

accelerated. 

Conclusion 

We discussed developing a model to fill a research gap. As a result, the essential roles of the human 

physiological artery were investigated in relation to the heat source, chemical reaction, wall shear stress, 

magnetic field, radiation parameter, Reynold number, and Schmidt number. We discovered the critical flow 

parameters while working on the profiles, and if properly managed, they may be useful cardiovascular diseases. 

• The treatment parameter, Reynold number, pressure gradient parameter, and heat source all have an effect on 

the axial velocity and temperature profile growth in our study. 

• As the chemical reaction, pulse rate, peclet, Reynold, Schmidt, and magnetic field parameters increase, the 

concentration, temperature, and velocity profile decrease. 

 

• Increasing the magnetic field parameter increases flow resistance and wall shear stress. 

 

 

 

 

http://www.jetir.org/


© 2022 JETIR December 2022, Volume 9, Issue 12                                                www.jetir.org (ISSN-2349-5162) 

JETIR2212418 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e149 
 

                           

 

                   

 

 

Fig. 1: Temperature Profile for specific 

entries of 𝑁 along a radial distance 

 

Fig. 2: Temperature Profile for specific 

entries of Peare shown along a radial 

distance 

 

Fig. 3: Temperature Profile for specific 

entries of w are shown along a radial 

distance 

 

Fig. 4: Temperature Profile for specific 

entries of  Rd1are shown along a radial 

distance 
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Fig. 5: Concentration Profile for specific 

entries of Re are shown along a radial 

distance 

 

Fig. 6: Concentration Profile for specific 

entries of  Sc are shown along a radial 

distance 

 

Fig. 7: Concentration Profile for specific 

entries of w  are shown along a radial distance 

Fig. 8: Concentration Profile for specific 

entries of E are shown along a radial distance 
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